

ENZYME CATALYZED PROCESS FOR LOW COST CO₂ SEPARATION AND CAPTURE

Sean Black • Tracy Bucholz • Matthew Hulvey Robert Martinelli • Brett Rambo • John Reardon

> Paper # 120 2012 MEGA Conference Baltimore, MD August 22, 2012

AGENDA

- Introduction
- Akermin Technology
 - Enzymes
 - Benefits
 - Results of Economic Modeling
 - Laboratory Test Results
- DOE Pilot Project
- Conclusions

AKERMIN, INC.

- St. Louis-based biotechnology company
- Developing next generation cost and energy efficient, environmentally benign systems for CO₂ capture
- 22 FTEs; seven Ph.Ds
- Funded by VCs and strategic investors
- Combining biochemistry, nanotechnology and engineering to develop and commercialize a novel, low-cost solution for carbon management

THE CHALLENGE

CO₂ Management Today

Driving the Need is Growth in:

- Process industries requiring CO₂ capture
- Supply/demand for natural gas
- Demand for EOR
- CO₂ emissions
- Carbon capture regulations
- CO₂ feedstock for mineralization and bio-utilization

- Expensive, need dramatic cost reductions
- Political and regulatory uncertainties
- Revenue plays hampered by costs
- Dominant solution: Amine solvents
 - Reliable, yet expensive
 - Environmentally undesirable & require special handling
 - Issues with degradation and corrosion
 - High investment cost and energy consumption
- Delay in large-scale adoption

Growth, uncertainty and cost create CO₂ management opportunities

OUR FOCUS

'Bridging the gap' to provide a biocatalyst-enabled industrial solution

Biocatalysts

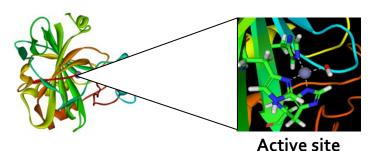
- Nature's perfect solution, Carbonic Anhydrase
- Over 100 times faster than best amines
- Short life in industrial process

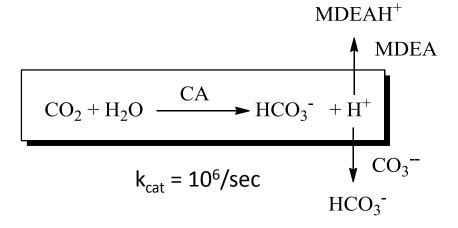
Akermin's Solution: Putting Enzymes to Work

- Solves problem of economic delivery of biocatalyst
- Protects biocatalyst using unique, proprietary polymer films
- Combines biochemistry and nanotechnology with engineering
- Capital-light using partnership model
- Scalable
- Compatible for new and existing systems
- Simple and environmentally-friendly approach

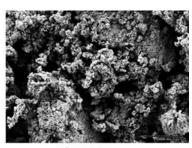
Customer Needs

- Continuous processes
- Robust solutions
- Reduced capital intensity
- Simplified process
- Flexible/adaptable
- Low lifecycle cost


Disruptive Solution for CO₂ Management



OUR SOLUTION


Biocatalyst Delivery System

Carbonic Anhydrase (CA)

CA is integrated in polymer with high surface area to minimize diffusional limitations

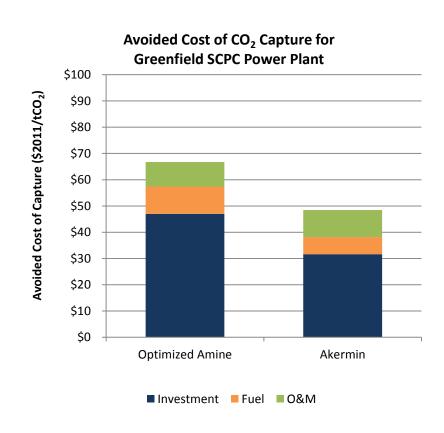
5kV 2500x mag

- Uses nature's best tool, CA, to accelerate CO₂ absorption
- Integrates biocatalyst into scalable low-cost proprietary polymer film
 - Maximizes performance
 - Extends biocatalyst lifetime
- Works with conventional mass-transfer devices
 - Reduces scale-up risk

KEY BENEFITS

Total cost of capture over 30% less than optimized amine systems

Reduced capital costs

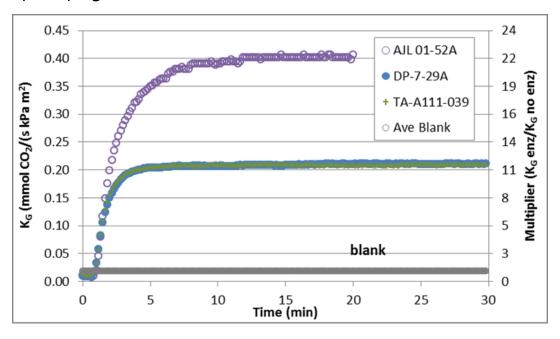

- No polishing FGD
- No wash columns
- Minimal/no intercooling
- No reforming
- Reduced requirements for solution handling & storage

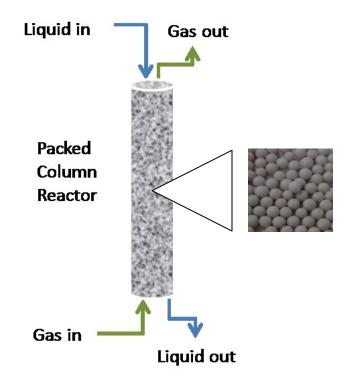
Reduced operating costs

- Lower costs for solution replacement
- Lower cooling requirements; water consumption
- Energy-efficient process; development target of 2.5 GJ/t-CO₃

Environmentally-friendly

- No solvent emissions to the atmosphere
- Produces benign by-products with low disposal costs, opportunities for resale



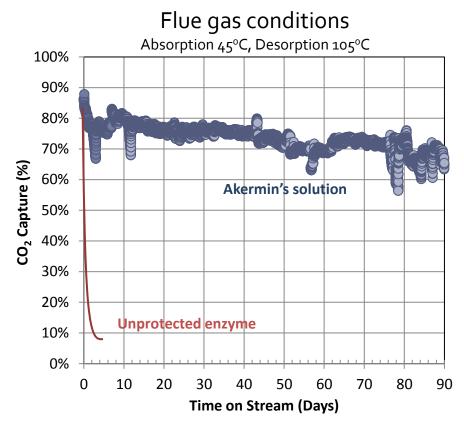

Enables a simple process chemistry and design that yields a low-cost solution for CO₂ capture

PERFORMANCE OF BIOCATALYST IN A COUNTER-CURRENT FLOW COLUMN

20% Lean CO_2 loading at room temperature p = 1 psig

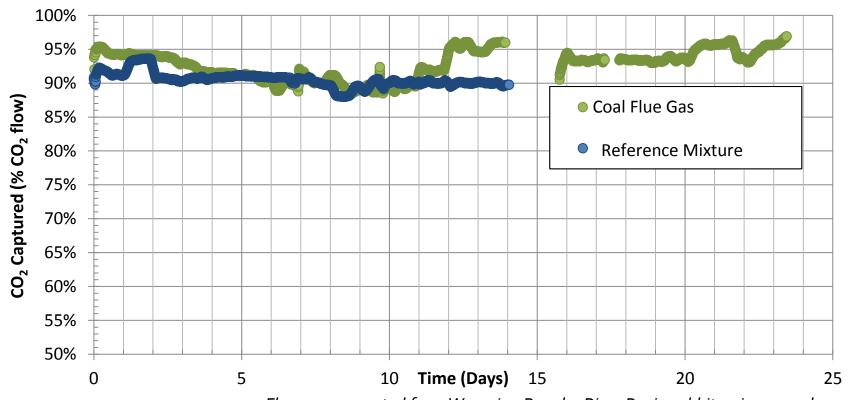
Note: K_c reported per packing area, lab-scale test reactor interfacial area ~ 30%

Up to 22-fold increase of K_G was demonstrated



LONG-TERM PERFORMANCE

Confirmed commercially-viable performance levels


Akermin's Closed Loop Reactor

Over 20 million CO₂ molecules hydrated by one CA molecule over 90 days Translates into > 400 kg CO₃ captured per day per kg of CA

TESTING ON FLUE GAS

Flue gas generated from Wyoming Powder River Basin subbituminous coal Total mercury content (Hg^{2+} and Hg^{o}) ~ 2ppbw

 \sim 90-95% CO₂ capture sustained for over 23 days on flue gas (\sim 14% feed) Overall performance is stable and comparable with reference

DOE PILOT PROJECT

Demonstrate Biocatalyst delivery system on power plant flue gas

Project participants

- Project duration: 33 months (initiated in October 2010)
- Funding

Total Project: \$ 4,750,000

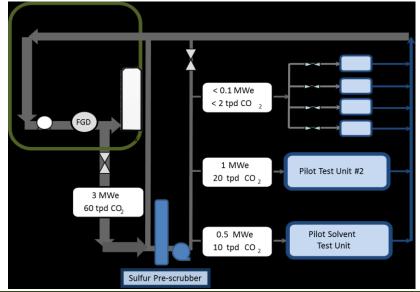
DOE Funding: \$ 2,910,000

Akermin Cost share: \$ 1,840,000

200x scale-up from bench-scale, closed loop reactor

TESTING AT THE NATIONAL CARBON CAPTURE CENTER (NCCC)

Flue gas drawn from downstream of FGD and returned upstream so any contaminants introduced are removed by FGD before passing to stack.


Akermin scheduled to commission pilot plant in 4th quarter of 2012; testing for up to six months.

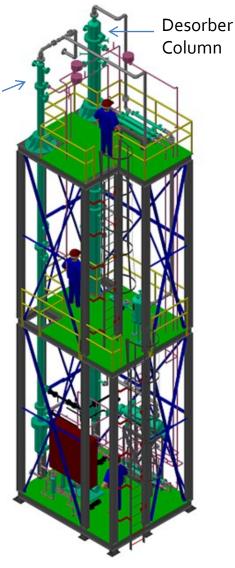
Post-Combustion CO₂ Capture Center (PC₄) part of the National Carbon Capture Center (NCCC).

Located adjacent to Alabama Power's Plant Gaston.

Established in 2009 through transition of Power Systems Development Facility and supported through funding from the US DOE.

PC4 commissioned in March 2011.

KEY PROJECT OBJECTIVES - PHASE II


- Engineer Bench-Scale Carbon Capture System
 - 500 SLPM (5 to 10 kWe)
- Capture CO₂ from flue gas slip-stream for up to six months:
 - Demonstrate 90% CO₂ capture in presence of biocatalyst and potassium carbonate
 - Demonstrate long-term activity of biocatalyst delivery system
 - Characterize rate enhancement of biocatalyst delivery system
 - Demonstrate tolerance to flue gas impurities
 - Evaluate impact of external conditions on process performance
- Generate data to refine simulation models and confirm key advantages
- Model capital and operating costs for commercial-scale system

BENCH UNIT SPECIFICATIONS

Absorber _____

- Overall dimensions (LxWxH): 10' X 12' X 49'
- Absorber Design Case
 - 500 SLPM flue gas (nominal)
 - Sulzer 500 m²/m³ packing
 - Nominal Liquid: 300 kg/hr
 - 20 wt% K₂CO₃
- Heat recuperative cross exchanger and trim coolers
- Emerson Delta-V Control System

UPCOMING ACTIVITIES

Fabrication of Bench Unit	June – October 2012
Scale-up coating process and coat contactor	November 2012
Install/Commission	November 2012
Initial Testing (blank)	December 2012
Initial Testing (biocatalyst)	January 2013
Operate unit for six months	January – June 2013
Model and evaluate the capital operational costs for full-scale coal-fired power plant	June 2013

PROJECT TEAM

AKERMIN:

Dr. Alex Zaks, PM; VP, Research & CTO

John Reardon, PI; Director, Engineering

Dr. Tizah Anjeh, Senior Scientist

Dr. Tracy Bucholz, Senior Scientist

Dr. Matt Hulvey, Senior Scientist

Dr. Brett Rambo, Senior Scientist

Dr. Mark Walker, Senior Scientist

Dr. Donghui Jacobs, Research Scientist

Dawn Powell, Sr. Research Associate

Keith Killian, Research Associate

Alex Linder, Research Associate

Josh Morris, Research Associate

Alex Shaffer, Engineering Associate

Jonathan Tuttle, Engineering Associate

Luke Weber, Research Associate

PNNL:

Charles Freeman, PM

Mark Bearden, Pl

Dr. James Collett, PI

Dale King, PI

BATTELLE:

Bradley Chadwell, PM

U.S. DOE-NETL

Andrew Jones, PM

Special thanks to Novozymes (enzyme supply) and Emerson (design and supply of bench unit controls and instrumentation)

ACKNOWLEDGEMENT AND DISCLAIMER

Acknowledgement: This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FE0004228.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency.

ANY QUESTIONS?

Sean Black VP, Business Development (314) 669-2612 (O) (865) 804-8235 (C) blacks@akermin.com

www.akermin.com